Visualizing allele-specific expression in single cells reveals epigenetic mosaicism in an H19 loss-of-imprinting mutant.
نویسندگان
چکیده
Imprinting is a classic mammalian epigenetic phenomenon that results in expression from a single parental allele. Imprinting defects can lead to inappropriate expression from the normally silenced allele, but it remains unclear whether every cell in a mutant organism follows the population average, which would have profound implications for human imprinting disorders. Here, we apply a new fluorescence in situ hybridization method that measures allele-specific expression in single cells to address this question in mutants exhibiting aberrant H19/Igf2 (insulin-like growth factor 2) imprinting. We show that mutant primary embryonic mouse fibroblasts are comprised of two subpopulations: one expressing both H19 alleles and another expressing only the maternal copy. Only in the latter cell population is Igf2 expression detected. Furthermore, the two subpopulations are stable in that cells do not interconvert between the two expression patterns. Combined small input methylation analysis and transcriptional imaging revealed that these two mutant subpopulations exhibit distinct methylation patterns at their imprinting control regions. Consistently, pharmacological inhibition of DNA methylation reduced the proportion of monoallelic cells. Importantly, we observed that the same two subpopulations are also present in vivo within murine cardiac tissue. Our results establish that imprinting disorders can display striking single-cell heterogeneity in their molecular phenotypes and suggest that such heterogeneity may underlie epigenetic mosaicism in human imprinting disorders.
منابع مشابه
I-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen
Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...
متن کاملO-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development
Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...
متن کاملReversal of loss of imprinting in tumor cells by 5-aza-2'-deoxycytidine.
To determine whether loss of imprinting in cancer might be reversed by altering DNA methylation, we treated tumor cells with 5-aza-2'-deoxycytidine, a specific inhibitor of cytosine DNA methyltransferase. Treated cells showed several significant and reproducible changes. (a) Equal expression of maternal and paternal alleles of insulin-like growth factor 2 switched to predominant expression of a...
متن کاملSelective loss of imprinting in the placenta following preimplantation development in culture.
Preimplantation development is a period of dynamic epigenetic change that begins with remodeling of egg and sperm genomes, and ends with implantation. During this time, parental-specific imprinting marks are maintained to direct appropriate imprinted gene expression. We previously demonstrated that H19 imprinting could be lost during preimplantation development under certain culture conditions....
متن کاملPaternal imprints can be established on the maternal Igf2-H19 locus without altering replication timing of DNA.
Genomic imprinting in mammals marks the parental alleles in gametes, resulting in differential gene expression in offspring. A number of epigenetic features are associated with imprinted genes. These include differential DNA methylation, histone acetylation and methylation, subnuclear localization and DNA replication timing. While DNA methylation has been shown to be necessary both for establis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 30 5 شماره
صفحات -
تاریخ انتشار 2016